

Hydraulic Elevators are Energy Efficient and Future-oriented

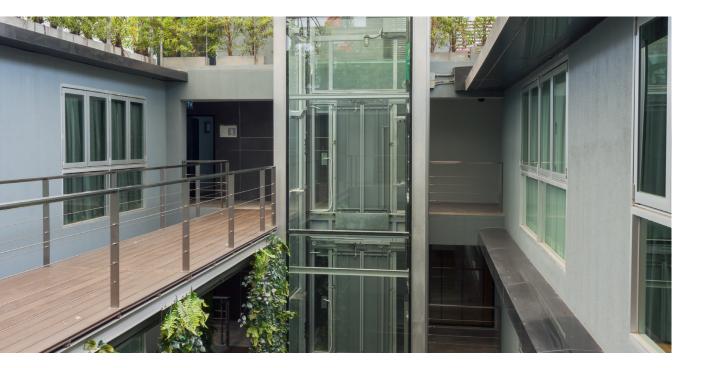
Facts, arguments and explanations

The Advantages of Hydraulic Elevators

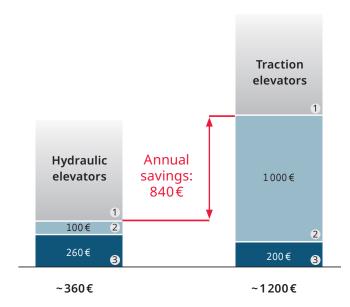
Overview

	Hydraulic elevators	Traction elevators (with no machine room)
	- Noise source can be placed in the machine room far	– Noise source is normally placed in the pit head,
Noise	away from the shaft e.g. in the basement floor	the noise is loudest in the top floor (attic flat!)
	- Smaller space requirement in the shaft	– Smaller car due to the considerable space needed for
	 Flexible machine room location 	the sheave assembly and counterweight, alternatively a
	 A great deal of design freedom for architects 	larger shaft cross-section and head height
Design and space	– No constraints on doorways or the shape of the car	– Architectural design scope is very restricted
	 Emergency evacuation procedures are very simple and 	
	completely safe	 Complicated, and in some respects hazardous,
	– Much safer when used in earthquake zones	emergency evacuation procedures
	 Safety during service and repair work, since 	– In an earthquake, the danger from drive components
Safety	there is no moving counterweight	or the counterweight falling on the car
		– Long repair and maintenance times
		 Heavy wear on traction sheave and ropes
	 Low-maintenance drive technology 	– With manufacturer-dependent systems, the operator is
	 No wear on pulleys and ropes 	"locked in" for maintenance and repairs; independent
	 Replacement parts are seldom needed 	service providers are shut out
Maintenance	 Free choice of maintenance companies 	 Complicated work procedures, and hazardous
and service	– Drive is easy accessible	working situations
	 Simple and economical assembly 	
	 Hydraulic elevators are particularly suitable for projects 	– The drive system in the shaft head is difficult to access
Installation	where retrofitting is involved	and assembly work is hazardous
	 For buildings with up to five floors, the cost effective- 	
Costs	ness of hydraulic elevators is virtually unbeatable	– Very high costs for service and replacement parts

Hydraulic elevators



125 Traction elevators " (with no machine room)



Save Costs with Hydraulic Elevators

Based on a study on power consumption and savings potential with elevators and of the known maintenance costs of hydraulic and traction elevators, the result is over €800 annual savings for a hydraulic passenger elevator in an apartment building.

This study is the foundation of belowmentioned calculation of energy costs for an elevator in an apartment building in which 40000 trips are taken per annum, i.e. approx 100 trips daily.

Bases of calculation

Annual costs

3 Energy costs	Hydraulic elevators	Traction elevators	
Drive consumption	650kWh ^{a)}	250 kWh	
Standby	650 kWh ^{b)}	750 k W h	
Total	1300kWh	1000kWh	
at 0.20€/kWh	260€	200€	

Energy costs are made up of the consumption for trips and for standby times.

^{a)} By a factor of 2.6 higher power consumption than traction elevators with a typical load factor

^{b)} One quarter of savings with a hydraulic elevator is the result based on dispensing with the inverter

Source: Swiss Federal Office of Energy, study by the S.A.F.E. Schweizerische Agentur für Energieeffizienz (Swiss Agency for Energy Efficiency), final report on power consumption and savings potential with elevators. 1 Drive independent costs (maintenance of control systems, doors, car and emergency evacuation services,...)

2 Maintenance of drive system

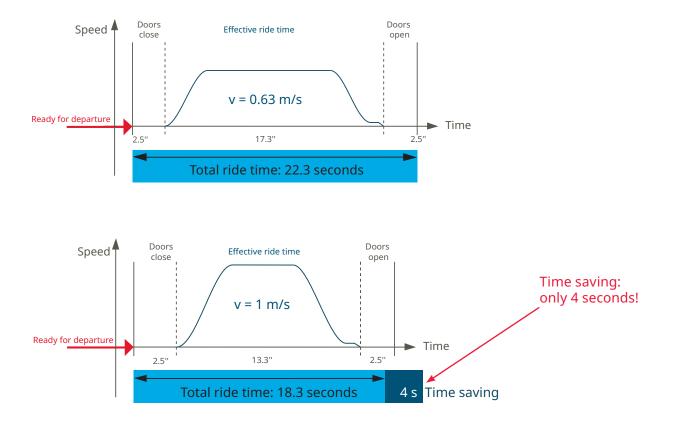
3 Energy costs

Total

2 Maintenance of drive system	Hydraulic elevators	Traction elevators	
	Change of oil and seals every 15 yearse	Change of ropes and sheaves every 10 years	
Labour and materials	1500€	10000€	
Annual share	100€	1000€	

With a hydraulic elevator, oil and seals must be changed every 15 years. Materials are obtainable on the open market for hydraulics. With a traction elevator, ropes and sheaves must be changed on average every 10 years. The parts required are proprietary and expensive.

Hydraulic Elevators Ensure Quick Arrival



Important is the total ride time

Would you fly by airplane to the nearest town? Your travel speed would be very high, but check-in, security, and downtime at the airports make up most of the travel time, so the high ticket price would not be justified. Riding an elevator is similar: When the travel is short, max. speed is only reached for a short time. A typical "stop and go" ride up to 6 floors hardly ever justifies a higher max. speed than 0.63 m/s.

58% higher max. speed (v) only results in an 18% reduction in ride time! The Department of Energy therefore recommends: "For houses with up to 6 floors/ stops, 0.63m/s nominal speed is normally sufficient" *

Comparison for a 4-stop system with 9m travel:

*Source: Swiss Federal Office of Energy, study by the S.A.F.E. Schweizerische Agentur für Energieeffizienz (Swiss Agency for Energy Efficiency), final report on power consumption and savings potential with elevators

With Hydraulic Elevators You Ride Safe

Hydraulic elevators are safe in all phases of operation:

Safe installation and service, high earthquake resistance and simple emergency rescue without backup power. All this is good to know, if you do not want to compromize safety in any way.

The new requirements for protection against uncontrolled movement of the cabin (A3 standard) are easy to fulfill with a hydraulic elevator.

The safety of your elevator

Phase	Advantages with hydraulics		
	 Comfortable and safe riding feeling 		
	 Stopping accuracy ± 3 mm 		
Riding behaviour	 Smooth starting and stopping 		
	– Hydraulic elevators are safer to install		
	 No heavy drives to be installed overhead 		
	– No counterweights (no risk of collisions or uncontrolled		
Installation	upward movement)		
	– All work on the drive can be done while standing safely		
	 No risk to service staff from counterweights 		
	 No replacement of heavy shieves and ropes required 		
	– Drive service can be done with shaft doors closed,		
Service / Repair	minimising the risk to the public of an accidental fall		
	 Fast rescue downwards, independent of load 		
	 Simple procedure does not require trained staff 		
Rescue / Evacuation	 No danger from counterweights in multiplex systems 		
	– Fast evacuation downwards is standard (with traction MRLs,		
	smoke rising up the shaft can hinder access to the rescue		
Fire	elements on the top floor)		
	 The shaft head does not carry heavy loads 		
	(drive is on the ground)		
Earthquake	 No risk of dangerous counterweight oscillations 		

Additional advantages:

- Minimum service requirements ensure cost-effective operation
- Large planning flexibility allows for an efficient and inexpensive solution to your transportation needs
- Highest ride comfort and low noise emissions with a machine room will satisfy the most demanding users

Design freedom, adaptability and low space requirement make hydraulic elevators ideal for installation in residential buildings, such as shown here for opening up an attic.

Hydraulic elevators are also particularly suitable for projects where retrofitting is involved, as shown here in an art nouveau building. They match the existing architectural style perfectly and adapt flexibly to their surroundings, thanks to the free choice of door orientation.

The world's tallest hydraulic elevator glides through the middle of the largest cylindrical aquarium in the world. These superlatives can be found in the Moscow shopping center "Oceania Mall". The aquarium is 24 meters tall, 10 meters wide and filled with 900,000 liters of water.

Hydraulic Elevators Are Flexible

Hydraulic elevator drives by Bucher Hydraulics have proven successful over many years and in many ways:

Freedom of design for architects, non-proprietary technology, simple installation, ease of maintenance, long service life and the most modern valve technology.

Hydraulic Elevators Are Powerful

Reach highest number of rides with variable frequency drive

Bucher Hydraulics variable frequency drive products have been on the market for over 10 years. The benefits of this technology are many:

- High number of rides thanks to shorter ride times
- Maximum availability in high use, high load applications, such as shopping centres, hospitals, sports stadiums, railway stations, airports etc.
- Low heat build-up allows for up to 200 rides/hour without oil cooler
- Low noise for a better environment

Our competitors offer similar technology, but in a more restricted scope:

Other hydraulic solutions with variable frequency drives (competitors)

9	Typically only available for home elevator or passenger elevators
5	Complex start-up with adaptations specific to the site
Ţ	Ride in down direction and levelling accuracy can be unsatisfactory and depend strongly on load, temperature and pump characteristics
9	Complex to handle, limited ride curve adjustability
Ţ	Not easily available as an upgrade
Ţ	Lower power input goes together with lower speed / performance
Ţ	Insufficient integration of hydraulics, VF drive and elevator technologies
Þ	Electronics still susceptible to friction, load and temperature variations

Examples of realized projects:

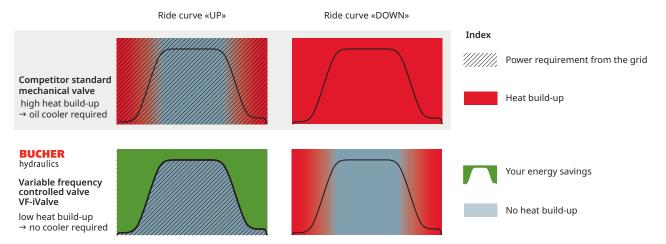
- Railway stations: Network-Rail (UK), Deutsche Bahn
- Airports:
- Frankfurt, Pudong Airport (Shanghai) – Others:
- IKEA, Kaufland-Group, Daimler, Messe Frankfurt

Original Bucher Hydraulics variable frequency drive technology

S	Available for the complete application range from simple passenger elevators to large goods elevators
£)	Short and easy start-up thanks to pre-programmed site paramters
	Excellent ride quality under all load and temperature conditions
A	Simple parameter adjustment on site if required
Solution	Upgrade of existing installations possible without touching the controller (using Bucher Hydraulics MULTIkit)
£)	Hydraulic counterweight allows for reduced power connection without compromising speed or performance
5	Technology leader for the integration of hydraulics, VF drive and elevator technologies
£)	Proven technology, thousands of systems in service worldwide since over 15 years

Hydraulic Elevators with Variable Frequency

For highly used elevators an oil cooler is an imperfect compromize - it is much better without!



Variable frequency drive instead of oil cooler

With variable frequency you can reach easily high numbers of travels without oil cooler. Reduce waste heat by using:

- Electronic valve technology
- Efficient drive technology
- Variable frequency drive technology

Avoid unnecessary heat build-up

Example*:

Heat gain:	3.7 kW	1.6 kW
Required cooling:	2.3kW	0 kW
Rides possible without cooling:	45 rides/h	140 rides/h
Power consumption per year:	14310kWh	6160kWh
Energy costs per year:	EUR 1820	EUR 778
Your saving per year:		EUR 1042

Investment cost:

Oil cooler:	EUR 800	VF drive:	EUR 3000
HVAC costs to the		VF-valve	
building**:	EUR 3450	technology:	EUR 800
Total:	EUR 4250	Total:	EUR 3800
Your savings per year:			EUR 450

Your benefits:

- Up to 200 starts/h without cooler
- Saves up to 80% drive energy
- Up to 10dBA quieter
- Shorter ride times with a faster start
- Reduced power connection requirement when combined with a hydraulic counterweight
- Reduced wear thanks to lower oil temperatures
- Cost-effective installation with minimal HVAC costs

* 1000kg contract load, 4 stops, speed 0.63m/s, 120rides/h during 9 hours per day

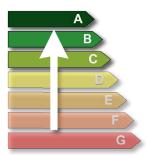
** Cost for HVAC equipment to exhaust heat from the building: Assumption = 1500.- EUR per kW cooling load

Hydraulic Elevators Are Energy Efficient

The defining factor is the correct definition of the usage category

To use the available energy most efficiently, you need to know how the elevator is going to be used: Elevators in usage category 1 are standing for 99% of the time, an airport elevator is running all the time! Energy efficiency therefore primarily means finding the right drive solution for the specific application. Bucher Hydraulics has the optimum energy efficient drive for every usage category.

Usage category	Usage frequency (effective ride time per day)	Typical application	Important for good energy efficiency	Recommended solution
1 - 3	very low (12 to 90 min)	small residential or office building, small goods elevator	low standby power consumption	Comfort Line
3 and higher	medium (90 to 360 min)	large residential or office building, public buildings, large goods elevator	low drive consumption	Comfort Line / Eco Line
4 and higher	high (180 to 360 min)	shopping eentre, railway station, airport	low drive consumption	Eco Line


Example:

For a medium sized residential building an elevator is required with a comfortable ride but which will not be used very often. For high energy efficiency low standby power consumption is key, therefore the best product for the drive is the Comfort Line.

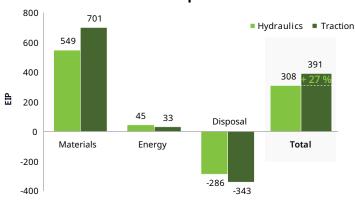
If the elevator is not used frequently, then look for low standby consumption; if the elevator is highly used, low drive consumption is important.

Facts:

- Typically over 50% of overall elevator power consumption is used during standby
- Cost effective measures can reduce standby requirement still further:
 - LED lighting vs. older lighting technologies
- No permanent door power
- Timer function for lighting and electronics
- Hydraulic drives use less standby power than
- traction drives

Hydraulic Elevators Are Eco-friendly

Ecological footprints of traction and hydraulic elevators compared


A well-known Swiss Technical University has made - together with Bucher Hydraulics – an interesting study about the ecological footprint of a hydraulic and a traction elevator.

Result:

A traction elevator needs a bit less energy during the ride, but has a stronger polluting effect over its lifetime!

This study was performed using the Life Cycle Assessment (LCA) method. The data collected allow for a sustainability comparison between a gearless traction MRL drive system and a hydraulic drive system with electronic control. The basis is a standard passenger elevator for an apartment building for 8 people, 1.0 m/s over 15 m. Measurement and qualification are done using Eco Indicator Points (EIP), also known as (environmental) impact points. They cover all kinds of environmental impacts such as climate change, health problems, land use or availability of resources.

Comparison of the impact points for the hydraulic, and for the traction drive system:

Distribution of Impact Points EIP

Standard passenger lift for 8 persons in a residential building, 1 m/s with 15 m hoisting height, usage category 1, usage duration: 20 years

Conclusions:

- The hydraulic drive system is more sustainable than the traction drive system
- Complete replacement of a hydraulic elevator with a traction elevator does not make ecological sense:
 A partial modernization is often the more sustainable approach
- The impact of energy use during the whole lifetime is far smaller than the environmental impact of the manufacture and installation

bucherhydraulics.com

Bucher Hydraulics AG Industriestrasse 15 6345 Neuheim, Switzerland T +41 41 757 03 33 elevator@bucherhydraulics.com